Annex C: Controlled substances

				100-Year
		Number	Ozone-	Global
		of	Depleting	Warming
Group	Substance	isomers	Potential*	Potential***
Group I				
CHFCl ₂	(HCFC-21)**	1	0.04	151
CHF ₂ Cl	(HCFC-22)**	1	0.055	1810
CH ₂ FCl	(HCFC-31)	1	0.02	1010
C ₂ HFCl ₄	(HCFC-121)	2	0.01-0.04	
C ₂ HF ₂ Cl ₃	(HCFC-122)	3	0.02-0.08	
C ₂ HF ₃ Cl ₂	(HCFC-123)	3	0.02-0.06	77
CHCl ₂ CF ₃	(HCFC-123)**	_	0.02	
C ₂ HF ₄ Cl	(HCFC-124)	2	0.02-0.04	609
CHFCICF ₃	(HCFC-124)**	_	0.022	
C ₂ H ₂ FCl ₃	(HCFC-131)	3	0.007-0.05	
$C_2H_2F_2Cl_2$	(HCFC-132)	4	0.008-0.05	
C ₂ H ₂ F ₃ Cl	(HCFC-133)	3	0.02-0.06	
C ₂ H ₃ FCl ₂	(HCFC-141)	3	0.005-0.07	
CH ₃ CFCl ₂	(HCFC-141b)**	_	0.11	725
C ₂ H ₃ F ₂ Cl	(HCFC-142)	3	0.008-0.07	
CH ₃ CF ₂ Cl	(HCFC-142b)**	_	0.065	2310
C ₂ H ₄ FCl	(HCFC-151)	2	0.003-0.005	
C ₃ HFCl ₆	(HCFC-221)	5	0.015-0.07	
C ₃ HF ₂ Cl ₅	(HCFC-222)	9	0.01-0.09	
C ₃ HF ₃ Cl ₄	(HCFC-223)	12	0.01-0.08	
C ₃ HF ₄ Cl ₃	(HCFC-224)	12	0.01-0.09	
C ₃ HF ₅ Cl ₂	(HCFC-225)	9	0.02-0.07	
CF ₃ CF ₂ CHCl ₂	(HCFC-225ca)**	_	0.025	122
CF ₂ ClCF ₂ CHClF	(HCFC-225cb)**	_	0.033	595
C ₃ HF ₆ Cl	(HCFC-226)	5	0.02-0.10	
C ₃ H ₂ FCl ₅	(HCFC-231)	9	0.05-0.09	
C ₃ H ₂ F ₂ Cl ₄	(HCFC-232)	16	0.008-0.10	
C ₃ H ₂ F ₃ Cl ₃	(HCFC-233)	18	0.007-0.23	
C ₃ H ₂ F ₄ Cl ₂	(HCFC-234)	16	0.01-0.28	
C ₃ H ₂ F ₅ Cl	(HCFC-235)	9	0.03-0.52	
C ₃ H ₃ FCl ₄	(HCFC-241)	12	0.004-0.09	
C ₃ H ₃ F ₂ Cl ₃	(HCFC-242)	18	0.005-0.13	
C ₃ H ₃ F ₃ Cl ₂	(HCFC-243)	18	0.007-0.12	
C ₃ H ₃ F ₄ Cl	(HCFC-244)	12	0.009-0.14	
C ₃ H ₄ FCl ₃	(HCFC-251)	12	0.001-0.01	
C ₃ H ₄ F ₂ Cl ₂	(HCFC-252)	16	0.005-0.04	
C ₃ H ₄ F ₃ Cl	(HCFC-253)	12	0.003-0.03	
C ₃ H ₅ FCl ₂	(HCFC-261)	9	0.002-0.02	
C ₃ H ₅ F ₂ Cl	(HCFC-262)	9	0.002-0.02	
C ₃ H ₆ FCl	(HCFC-271)	5	0.001-0.03	

		Number of	Ozone- Depleting
Group	Substance	isomers	Potential*
Group II			
CHFBr ₂		1	1.00
CHF ₂ Br	(HBFC-22B1)	1	0.74
CH ₂ FBr		1	0.73
C_2HFBr_4		2	0.3-0.8
$C_2HF_2Br_3$		3	0.5-1.8
$C_2HF_3Br_2$		3	0.4 - 1.6
C_2HF_4Br		2	0.7-1.2
$C_2H_2FBr_3$		3	0.1-1.1
$C_2H_2F_2Br_2$		4	0.2-1.5
$C_2H_2F_3Br$		3	0.7-1.6
$C_2H_3FBr_2$		3	0.1-1.7
$C_2H_3F_2Br$		3	0.2 - 1.1
C_2H_4FBr		2	0.07 - 0.1
C_3HFBr_6		5	0.3-1.5
$C_3HF_2Br_5$		9	0.2 - 1.9
$C_3HF_3Br_4$		12	0.3-1.8
$C_3HF_4Br_3$		12	0.5-2.2
$C_3HF_5Br_2$		9	0.9 - 2.0
C_3HF_6Br		5	0.7 - 3.3
$C_3H_2FBr_5$		9	0.1-1.9
$C_3H_2F_2Br_4$		16	0.2 - 2.1
$C_3H_2F_3Br_3$		18	0.2 - 5.6
$C_3H_2F_4Br_2$		16	0.3 - 7.5
$C_3H_2F_5Br$		8	0.9 - 1.4
$C_3H_3FBr_4$		12	0.08-1.9
$C_3H_3F_2Br_3$		18	0.1 - 3.1
$C_3H_3F_3Br_2$		18	0.1-2.5
$C_3H_3F_4Br$		12	0.3-4.4
$C_3H_4FBr_3$		12	0.03-0.3
$C_3H_4F_2Br_2$		16	0.1-1.0
$C_3H_4F_3Br$		12	0.07 - 0.8
$C_3H_5FBr_2$		9	0.04 - 0.4
$C_3H_5F_2Br$		9	0.07 - 0.8
C ₃ H ₆ FBr		5	0.02-0.7
Group III			
CH ₂ BrCl	bromochloromethane	1	0.12

- * Where a range of ODPs is indicated, the highest value in that range shall be used for the purposes of the Protocol. The ODPs listed as a single value have been determined from calculations based on laboratory measurements. Those listed as a range are based on estimates and are less certain. The range pertains to an isomeric group. The upper value is the estimate of the ODP of the isomer with the highest ODP, and the lower value is the estimate of the ODP of the isomer with the lowest ODP.
- ** Identifies the most commercially viable substances with ODP values listed against them to be used for the purposes of the Protocol.

*** For substances for which no GWP is indicated, the default value 0 applies until a GWP value is included by means of the procedure foreseen in paragraph 9 (a) (ii) of Article 2.